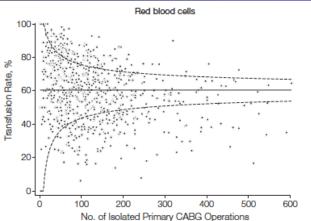
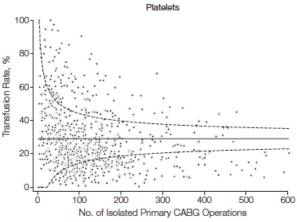
Transfusion en chirurgie cardiaque: hétérogénéité des pratiques Comment y remédier?

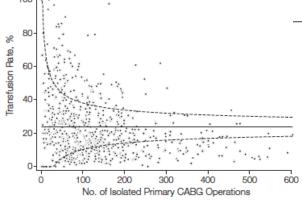
Philippe Van der Linden MD, PhD




Conflict of Interest Disclosure

In the past 5 years, I have received honoraria or travel support for consulting or lecturing from the following companies: Fresenius-Kabi GmbH CSL Behring GmbH Janssen-Cilag SA


Blood Transfusion in CABG Surgery


 Observational cohort study of 102,470 patients undergoing primary CABG under cardiopulmonary bypass in 2008 (798 sites < STS Adult Cardiac Surgery Database)

Hospital specific transfusion rate: RBC: 8-93% FFP: 0-98% Plts: 0-90%

Fresh-frozen plasma

From Bennett-Guerrero E et al. JAMA 304:1568-75, 2010.

Blood Transfusion in CABG Surgery

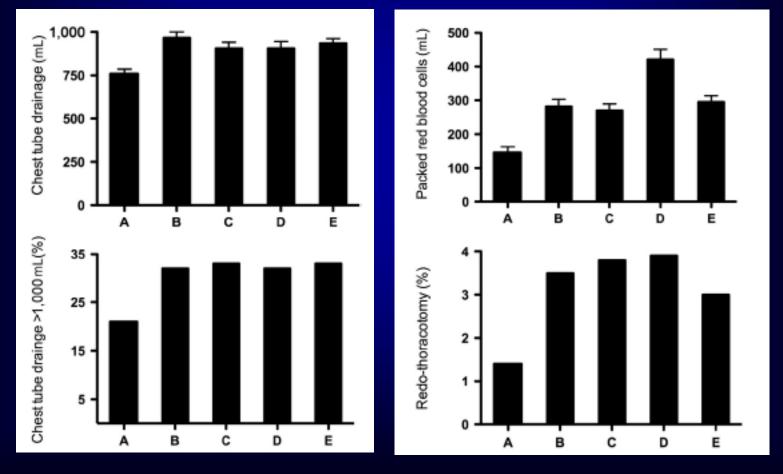
 Observational cohort study of 102,470 CABG patients (year 2008; 798 sites< STS Adult Cardiac Surgery Database)

 Multivariate analysis after adjustment for patient-level risks factors revealed that hospital transfusion rates varied by geographic location, hospital volume and academic status

 These 3 hospital characteristics combined explained only 11.1% of the variation in hospital risk-adjusted RBC usage

 Case mix explained 20.1% of the variation between hospitals in RBC usage

From Bennett-Guerrero E et al. JAMA 304:1568-75, 2010.


Independent Predictors of Chest Tube Drainage After Transfusion Cardiac Surgery

- Retrospective observational cohort study of patients undergoing cardiac surgery with CPB (1/2002-2/2008: N=2,575)
- Independent chest tube drainage predictors identified through multivariate analysis: individual operating surgeon, internal mammary artery grafting, CPB time, urgency of surgery, tricuspid valve surgery, redo surgery, LV impairment, male gender, low BMI and higher preop Hb

From Dixon B et al. J Cardiothorac Vasc Anesth 28:242-6, 2014.

Independent Predictors of Chest Tube Drainage After Transfusion Cardiac Surgery

 Retrospective observational cohort study of patients undergoing cardiac surgery with CPB (1/2002-2/2008: N=2,575)

From Dixon B et al. J Cardiothorac Vasc Anesth 28:242-6, 2014.

Effects of Perioperative Blood Transfusion and Blood Conservation in Cardiac Surgery Clinical Practice Guidelines upon Clinical Practices

- Survey of cardiac anesthesiologists and perfusionists' clinical practice to determine the role the STS and SCA Guidelines had in changing these practices.
- ✓ 1402 surveys from 1061 institutions (32% response rate).
- ✓ 78% of anesthesiologists & 67% of perfusionists reporting having read all, part, or a summary of the Guidelines.

From Likosky DS et al. Anesth Analg 111:316-23, 2010.

Effects of Perioperative Blood Transfusion and Blood Conservation in Cardiac Surgery Clinical Practice Guidelines upon Clinical Practices

- 20% of respondents reported that an institutional discussion had taken place and 14% that an institutional monitoring group had been formed
- ✓ 26% of respondents reported 1 or more practice changes in response to the Guidelines. The changes made were reported to be highly (9%) or somewhat (31%) effective in reducing overall transfusion rates

 4/38 Guideline recommendations were reported by >5% of respondents to have been changed in response to the Guidelines.

From Likosky DS et al. Anesth Analg 111:316-23, 2010.

RBC Transfusion in Cardiac Surgery: Impact of a Novel Clinical Decision Support Tool

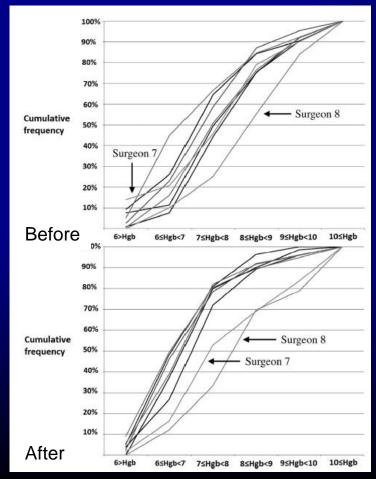
 Before and after study: implementation of a novel singleview clinical decision support tool within computerized provider order entry coupled with a provider feedback loop

Are you a physician or i	and have been been a	Blood Transfusion Results
Ver you a physician or 1	narneves provider f	6406/2014 22:12 Hernoglobin 6.8 gn/d, 6406/2014 22:14 Systolic BP 85 meHy 6406/2014 22:54 Heart Rate 110 bpm
	this blood transfusion due to:	
Acute Hemonhage Arrenia Anticipated Blood Loss Other	Anticipated blood loss is an indication that exists solely to prepare for transfusion expecting significant operative/procedural hemorrhage. It is NOT an indication for transfusion.	Anemia What is the patient's Hemoglobin?
Other Reason		C Hemoplakin (Hgb) - Bgm/d. C Hemoplakin (Hgb) - Bgm/d (Tgp/d. C Hemoplakin (Hgb) - 13gm/d.
		Which of the following is present on patient?
Acute Hemorrhage	bly significant blood loss signs?	Animis due to chemotenspy/datation-related faulter of enythopoiesis Global end organ ischemia, demonstrated by: (lactate) > 3 mmol/L, DR 5-r02 or Sc-r02 <600; Specific end organ ischemia, demonstrated by: new S1-1 wave changes on ECG, DR riving Troponin levels
		Reason for transfusion for moderate anemia:
is there hemodynamica hemorrhage, as defined O Yes O No		
his acute blood loss is	accompanied by:	
	for acute	

From Razavi SA et al. J Am Coll Surg 219:1028-36, 2014.

RBC Transfusion in Cardiac Surgery: Impact of a Novel Clinical Decision Support Tool

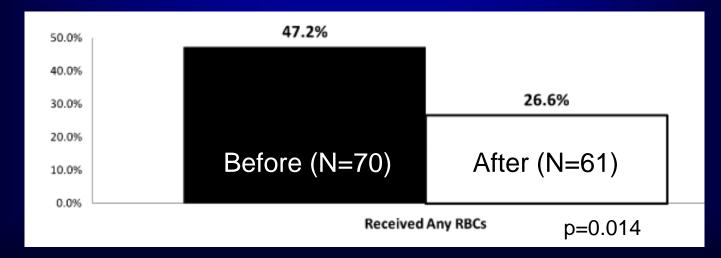
 Before and after study: implementation of a novel singleview clinical decision support tool within computerized provider order entry coupled with a provider feedback loop


	Pre-intervention N=744	Post-intervention N=765	P value
Postop RBC transfusion (%)	50	41	<0.001
Postop RBC units	1.6 ± 2.9	1.25 ± 2.5	0.01
Pre-transfusion Hb level (g/dl)	8.1 ± 1.5	7.7 ± 1.4	<0.001

No difference in intra-operative transfusions
 No difference in ICU length of stay and in-hospital mortality

From Razavi SA et al. J Am Coll Surg 219:1028-36, 2014.

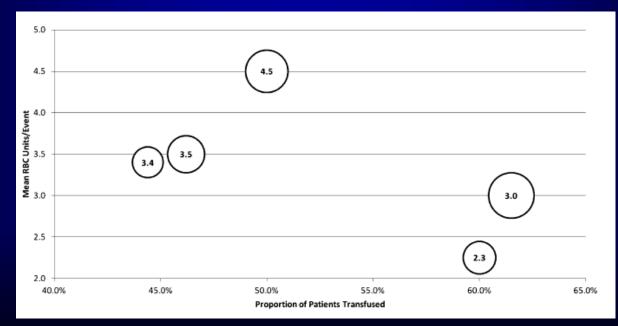
RBC Transfusion in Cardiac Surgery: Impact of a Novel Clinical Decision Support Tool


 Before and after study: implementation of a novel singleview clinical decision support tool within computerized provider order entry coupled with a provider feedback loop

From Razavi SA et al. J Am Coll Surg 219:1028-36, 2014.

Intraoperative Hemoglobin Management in Cardiac Surgery: Impact on RBC Transfusion

- Retrospective, before and after study: implementation of measures aiming at reducing hemodilution volume:
 - Decrease in intravenous fluid volume
 - Reduction of CPB circuit size
 - Use of retrograde autologous priming
- Total IV fluids reduced by 974 ml (672-1276): p<0.001
 Mean on-pump increase in Hct > 2%



From Tran MH et al. Transfusion 54:2769-74, 2014.

Intraoperative Hemoglobin Management in Cardiac Surgery: Impact on RBC Transfusion

- Retrospective, before and after study: implementation of measures aiming at reducing hemodilution volume:
 - Decrease in intravenous fluid volume
 - Reduction of CPB circuit size
 - Use of retrograde autologous priming

Variability in transfusion rate among anesthesiologists

From Tran MH et al. Transfusion 54:2769-74, 2014.

Comparison of 2 Doses of Tranexamic Acid in Patients Undergoing Cardiac Surgery

Multicenter double-blinded randomized study
 Patients stratified according to transfusion risk

- Low-dose group: 10 mg/kg + 1 mg/kg.h (N=284)
- High-dose group: 30 mg/kg + 16 mg/kg.h (N=285)

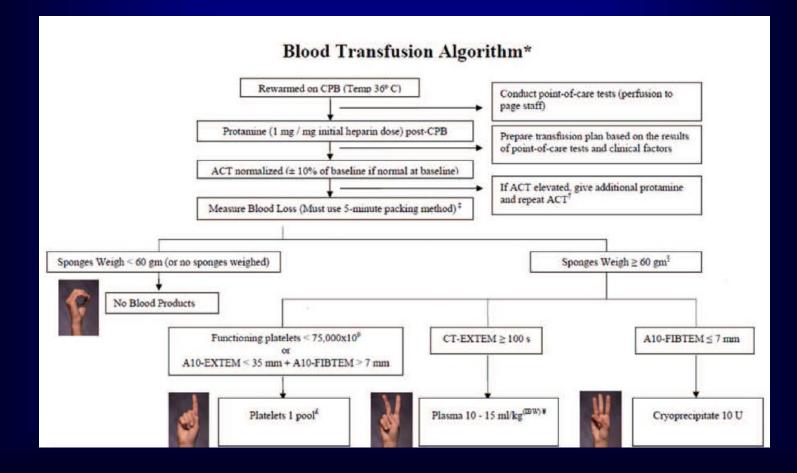
	Low Dose n = 284	High Dose n = 285	P Value
Transfusion during the first week; all patients			
Blood transfusion (yes)	180 (63.4)	170 (59.6)	0.3†
Packed erythrocyte transfusion (yes)	167 (58.8)	160 (56.1)	0.4†
FFP transfusion (yes)	74 (26.1)	53 (18.6)	0.03†
PC transfusion (yes)	64 (22.5)	43 (15.1)	0.02†
Fibrinogen (yes)	8 (2.8)	1 (0.4)	0.02†
Blood products (number of units)	4.10±0.39	2.49 ± 0.38	0.02*
Packed erythrocytes (number of units)	2.14±0.18	1.57±0.18	0.07*
FFP (number of units)	1.07 ± 0.14	0.49 ± 0.14	0.02*
PC (number of units)	1.13 ± 0.15	0.50 ± 0.15	0.02*
Transfusion during the first week; patients transfused			
Packed erythrocytes (number of units)	3.61 ± 0.24	2.81 ± 0.25	0.08*
FFP (number of units)	4.99 ± 0.38	2.90 ± 0.45	0.04*
PC (number of units)	5.45 ± 0.42	4.34 ± 0.53	0.3*

From Sigaut S et al. Anesthesiology 120:590-600, 2014.

Comparison of 2 Doses of Tranexamic Acid in Patients Undergoing Cardiac Surgery

Multicenter double-blinded randomized study
 Patients stratified according to transfusion risk

- Low-dose group: 10 mg/kg + 1 mg/kg.h (N=284)
- High-dose group: 30 mg/kg + 16 mg/kg.h (N=285)


	Low Dose n = 284	High Dose n = 285	<i>P</i> Value
Blood loss during day 1 (ml)	820±50.7	590 ± 50.4	0.01*
Return to surgery for hemostasis	17 (6.0)	7 (2.5)	0.03†
Mortality from day 0 to day 7	9 (3.2)	4 (1.4)	0.2†
Mortality from day 0 to day 28	14 (4.9)	8 (2.8)	0.2†

From Sigaut S et al. Anesthesiology 120:590-600, 2014.

	Low Dose	High Dose	<i>P</i>
	N = 284	N = 285	Value
Renal dysfunction Seizures during the first week	57 (20.1) 2 (0.7)	58 (20.4) 4 (1.4)	>0.9 0.7
Seizures up to 28 days	3 (1.1)	5 (1.8)	0.8
Pulmonary embolism	2 (0.7)	1 (0.4)	0.7
Deep venous thrombosis	2 (0.7)	1 (0.4)	0.7
Stroke	9 (3.2)	10 (3.5)	>0.9
Any complication	34 (12.0)	42 (14.7)	0.4

Transfusion Algorithm Based on Point-of-care Coagulation Assays in Cardiac Surgery

Retrospective, before and after study: institution of a practical POC-based transfusion algorithm

From Karkouti K et al. Anesthesiology 122:560-70, 2015.

Transfusion Algorithm Based on Point-of-care Coagulation Assays in Cardiac Surgery

Retrospective, before and after study: institution of a practical POC-based transfusion algorithm

		Prealgorithm (N = 1,311)		Postalgorithm (N = 1,170)	<i>P</i> Value
Effectiveness measures					
Erythrocyte transfusions (up to POD-7)	1,311	676 (52%)	1,170	476 (41%)	<0.001
Median number of units (IQR)	676	3 (2–5)	476	2 (1–4)	0.09
Platelet transfusions (up to POD-7)	1,311	448 (34%)	1,170	266 (23%)	< 0.001
Median number of units (IQR)	448	5 (5-10)	266	5 (5-10)	0.83
Plasma transfusions (up to POD-7)	1,311	449 (34%)	1,170	167 (14%)	< 0.001
Median number of units (IQR)	449	4 (2–6)	167	4 (26)	0.35
Cryoprecipitate or fibrinogen concentrate transfusions (up to POD-7)	1,311	53 (4%)	1,170	53 (5%)*	0.5
Prothrombin complex concentrate	1,311	19 (1%)	1,170	13 (1%)	0.5
Large-volume (≥4 units) erythrocyte transfusions (POD-0)	1,311	173 (13%)	1,170	80 (7%)	<0.001
Recombinant factor VIIa (up to POD-1)	1,311	45 (3%)	1,170	14 (1%)	<0.001

 No difference in outcome measures, except a lower incidence of surgical re-exploration in the postalgorithm group

From Karkouti K et al. Anesthesiology 122:560-70, 2015.

Transfusion Algorithm Based on Point-of-care Coagulation Assays in Cardiac Surgery

- Retrospective, before and after study: institution of a practical POC-based transfusion algorithm
- Results for subgroup analyses were consistent

	Erythrocyte Transfusions,	Platelet Transfusions, OR	Plasma Transfusions, OR	Large-volume Erythrocyte
	OR (95% Cl)	(95% Cl)	(95% Cl)	Transfusions, OR (95% CI)
All patients	0.50 (0.32–0.77)	0.22 (0.13–0.37)	0.20 (0.12–0.34)	0.23 (0.11–0.48)
High bleeding risk—yes	0.46 (0.23–0.95)	0.17 (0.08–0.34)	0.14 (0.08–0.27)	0.25 (0.12–0.50)
High bleeding risk—no	0.51 (0.30–0.86)	0.30 (0.15–0.60)	0.34 (0.18–0.78)	0.25 (0.02–0.34)
Anemia—yes	0.27 (0.11–0.67)	0.14 (0.05–0.37)	0.13 (0.04–0.37)	0.17 (0.06–0.49)
Anemia—no	0.57 (0.34–0.95)	0.26 (0.15–0.47)	0.21 (0.11–0.92)	0.27 (0.07–0.98)
Cell saver—yes	0.48 (0.27–0.86)	0.15 (0.07–0.29)	0.20 (0.10–0.40)	0.28 (0.12–0.66)
Cell saver—no	0.58 (0.31–1.10)	0.45 (0.32–0.94)	0.16 (0.06–0.41)	0.17 (0.04–0.81)
Desmopressin—yes	0.43 (0.18–1.00)	0.14 (0.06–0.31)	0.12 (0.05–0.27)	0.51 (0.19–1.37)
Desmopressin—no	0.60 (0.37–0.96)	0.35 (0.18–0.67)	0.29 (0.13–0.63)	0.08 (0.02–0.36)
±6 months*	0.60 (0.32–1.14)	0.29 (0.14–0.62)	0.25 (0.12–0.53)	0.31 (0.12–0.81)

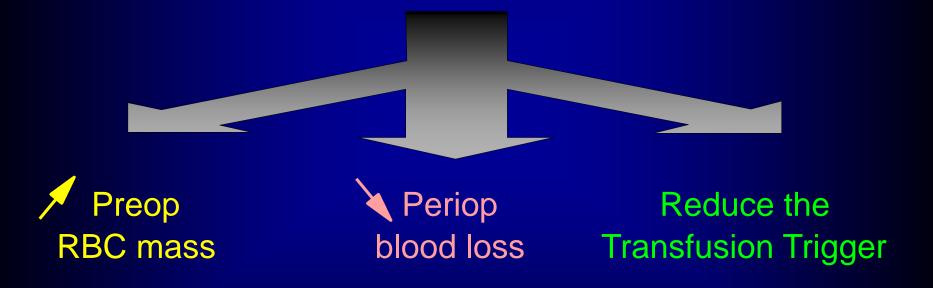
From Karkouti K et al. Anesthesiology 122:560-70, 2015.

Incidence & Importance of Anemia in Patients Undergoing Cardiac Surgery in UK

- National service audit (2010-2012):12/35 UK cardiac surgery centers provided data
- ✓ 20% of the patients (4754/23,800) did not have preop Hb
- Incidence of anemia (WHO definition): 31% (23 to 45%):
- Regional variation remained an independent effect
- Independent association of anemia with transfusion, mortality, and hospital stay

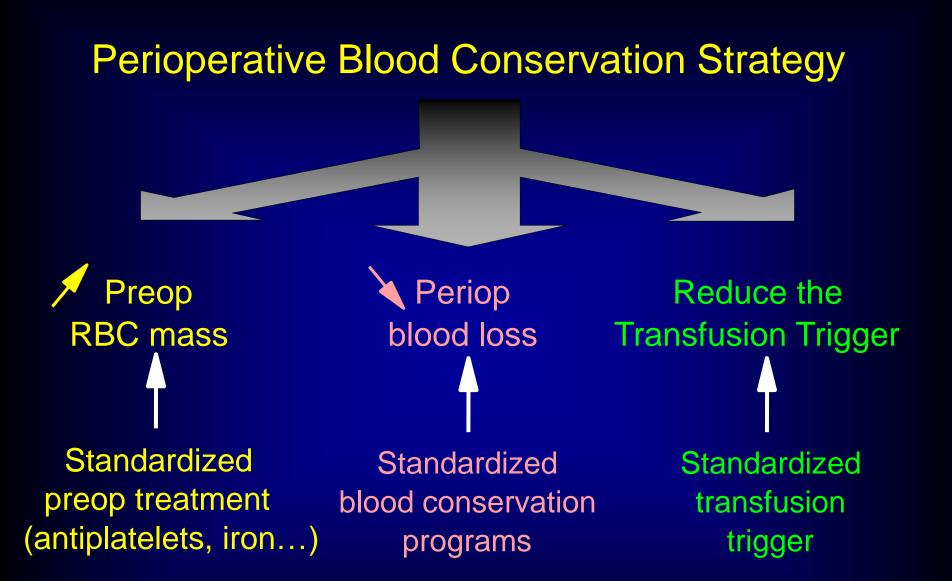
A 10g/L \checkmark in Hb was associated with a 43% \uparrow in the risk of transfusion and a 16% \uparrow in the risk of death (both p<0.001)

From Klein AA et al. Anaesthesia 71:627-35, 2016.

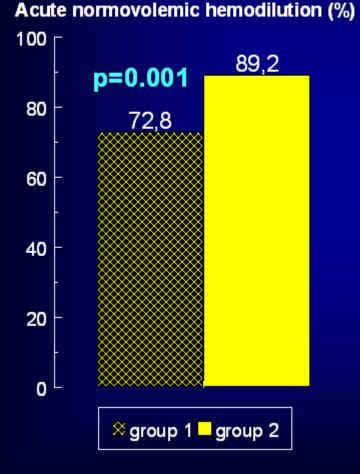

Patient Blood Management

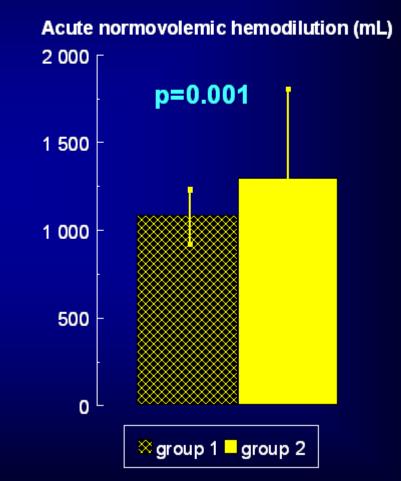
Defined as "the appropriate use of blood and blood components with a goal of minimized their use".

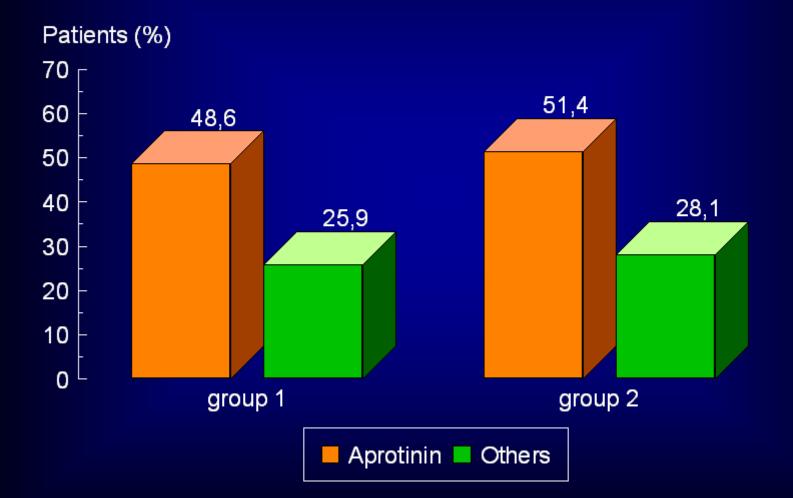
 Encompasses an evidence-based medical and surgical approach that is multidisciplinary (transfusion medicine specialists, surgeons, anesthesiologists, and critical care specialists) and multiprofessional (physicians, nurses pump technologists and pharmacists)

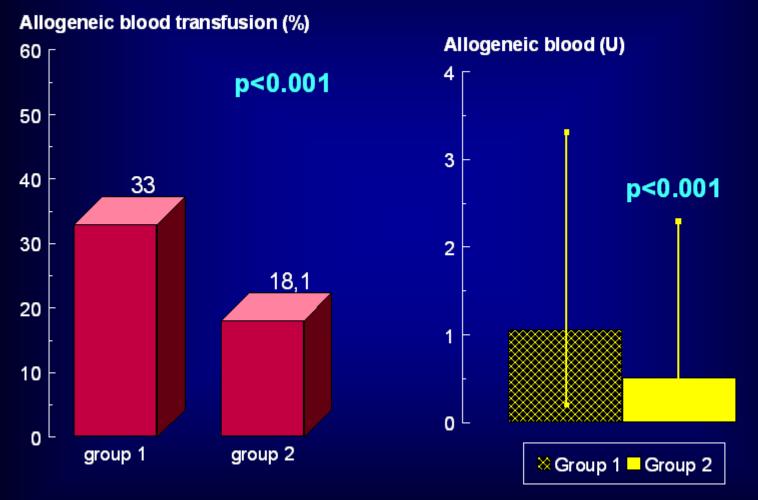

From Goodnough LT and Shander A. Anesthesiology 116:1367-76, 2012.

Patient Blood Management Program

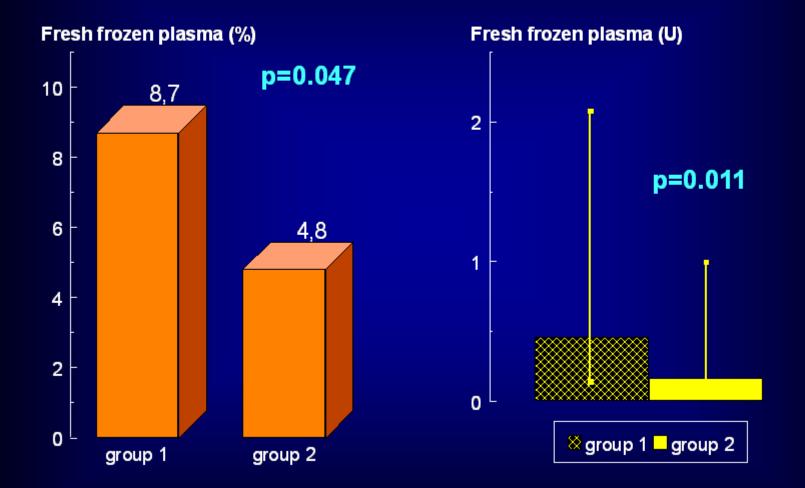


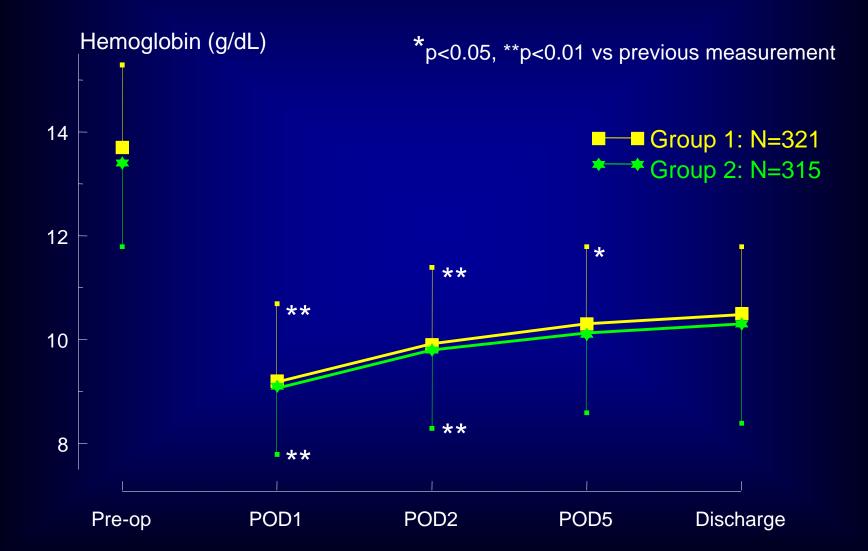

Effect of a standardized multidisciplinary approach of blood conservation program on allogeneic transfusion exposure ?

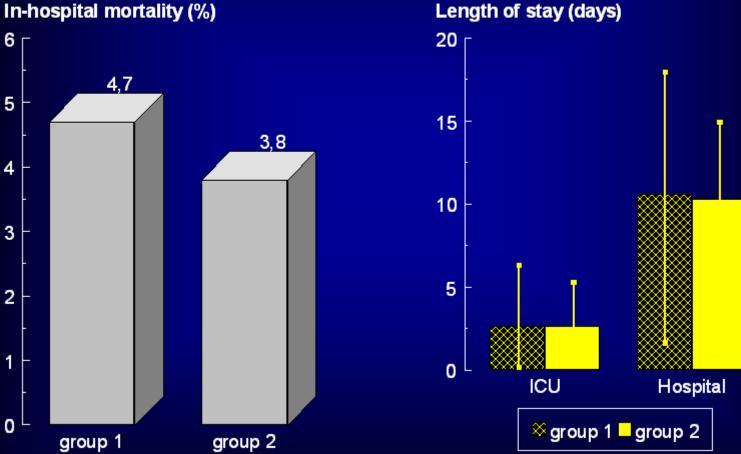




- Control group: September 97 August 98 N= 321 (group 1)
- Treated group: September 98 August 99 N= 315 (group 2)
- Data analyzed using analysis of variance, Student's t test, χ², and Fisher's exact test where applicable
- ✓ Data expressed as percentage of the total or mean ± SD






Group 1: 340 units in 108 patients; Group 2: 161 units in 57 patients

Group 1: 145 units in 28 patients; Group 2: 54 units in 15 patients

Perioperative Hemoglobin Level

In-hospital mortality (%)

Developing a Blood Conservation Strategy

Reliable data base

Choice of alternative techniques

- Surgical procedure and technique
- Patients limitations
- Health Care environment
- Immediate and long term costs

Continuous monitoring

 Multidisciplinary approach: anesthesiologists, surgeons, blood bankers...

From Baele P & Van der Linden P. Acta Anaesthesiol Belg 53:129-136, 2002.

Blood Use in Elective Cardiac Surgery: The 2 Austrian Benchmark Studies

Prospective observational multicenter studies

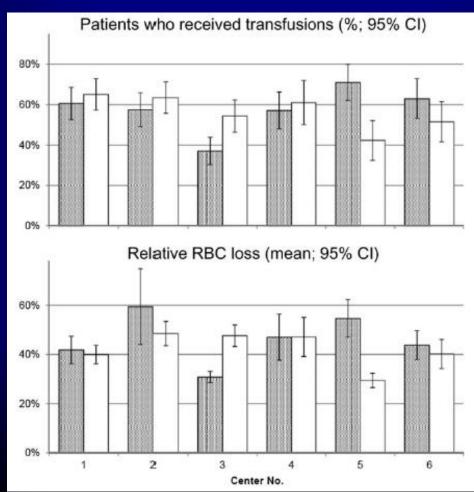
- ✓ April 04—February 05 (N=777) / July 09—August 10 (N=714)
- Less women, longer surgery and higher use of platelets inhibitors in the 2nd study

	1 st benchmark	2 nd benchmark	P value
Preop anemia (%)	24 tr	eated in 1 % of	patients
Preop Hb (%)	108 ± 12	106 ± 12	0.001
Lowest postop Hb (%)	79 ± 9	76 ± 10	<0.001
POD5 Hb (%)	84 ±10	81 ± 11	<0.001

From Gombotz H et al. Transfusion 54:2646-57, 2014.

Blood Use in Elective Cardiac Surgery: The 2 Austrian Benchmark Studies

Prospective observational multicenter studies

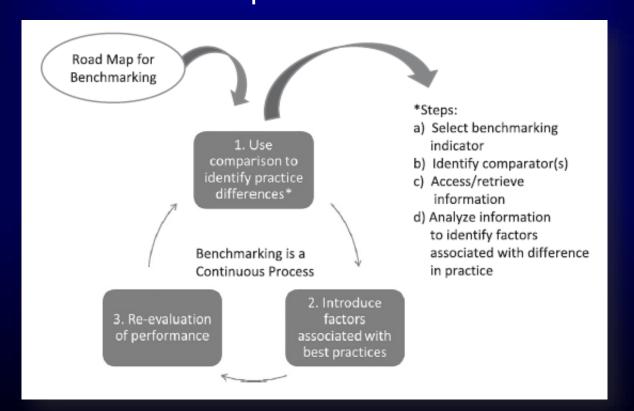

- ✓ April 04—February 05 (N=777) / July 09—August 10 (N=714)
- Less women, longer surgery and higher use of platelets inhibitors in the 2nd study

	1 st benchmark	2 nd benchmark	P value
Lost RBC volume (%)	45	43	0.515
Transfusion rate (%)	55	57	0.465
Median units transfused (IQR)	2 (2)	2 (2)	0.878
One unit transfusion (%)	11.7	11.3	0.914

From Gombotz H et al. Transfusion 54:2646-57, 2014.

Blood Use in Elective Cardiac Surgery: The 2 Austrian Benchmark Studies

Prospective observational multicenter studies
 April 04–February 05 (N=777) / July 09–August 10 (N=714)



first (III) and second (III) studies

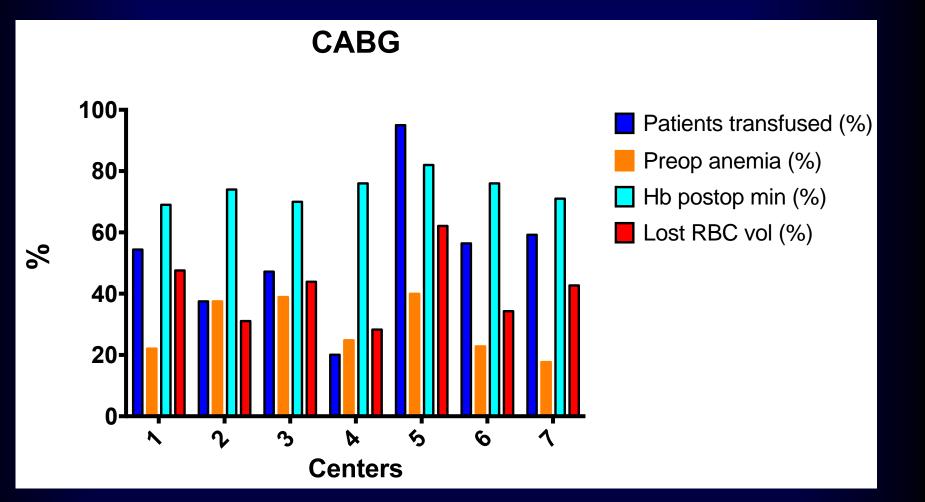
Gombotz H et al. Transfusion 54:2646-57, 2014.

Benchmark: Definition

« Benchmark is a structured continuous collaborative process in which comparisons for selected indicators are used to identify factors that, when implemented will improve transfusion practices »

From Apelseth TO et al: Transfus Med Rev 26:321-32, 2012.

The NATA Benchmark Project


- Step 1: Evaluation of transfusion practices in different interested centers across Europe and Canada
- Step 2: Implementation of measures of improvement in these different centers according to their own results
- Step 3: Re-evaluation of the practices development of "NATA centers of excellence"
- Step 4: Enlargement of the project to additional centers under the coordination of these centers of excellence

The NATA Benchmark Project

- Aim: Providing the basis for educational strategies to implement optimal PBM in participating centers
- Prospective observational study with online data collection (10 European centers and one Canadian)
- Incidence of transfusion and volume of RBC transfused significantly different between centers
- The relative importance of factors explaining RBC transfusion differs across institutions, some being patient related whereas others are related to the healthcare process

From Van der Linden P & Hardy JF. Eur J Anaesthesiol 33:913-21, 2016.

The NATA Benchmark Project

From Van der Linden P & Hardy JF. Eur J Anaesthesiol 33:913-21, 2016.

Developing a Patient Blood Management Program

Reliable database

- Choice of strategies
 - Surgical procedures and techniques
 - Patients' limitations
 - Health care environment
 - Immediate and long term costs
- Multidisciplinary approach
- Continuous monitoring

